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Abstract— This paper deals with the problem of disturbance
rejection for uncertain LTI SISO systems perturbed by an
unmeasurable external disturbance under the framework of
output regulation. The system is assumed to be minimum phase
and internally stable, but the model parameters are completely
unknown. In addition, no knowledge of the external distur-
bance, including frequency, amplitude and phase is required
to be known in advance. A novel high-order sliding mode-
based Unknown Input Observer(UIO) is developed to stabilize
the system and reconstruct the external disturbance. The main
feature distinguishing the proposed method from the existing
ones is that we do not need to integrate a frequency estimator
into the adaptive controller or update the frequency estimation
in a hybrid manner. Instead, the disturbance is directly du-
plicated by the aforementioned unknown input observer. The
boundedness of states and asymptotic convergence properties
are rigorously proved. Finally, the effectiveness of the proposed
technique is illustrated by a numerical example.

I. INTRODUCTION

The problem of tracking desired references while rejecting
disturbances in the presence of model uncertainties is gener-
ically known as robust output regulation, which has played
a central role through the history of control theory [1] and
can be found in myriad engineering applications, including
active rotor balancing [2], active noise cancellation [3] and
active suspensions [4], etc. In practice, the reference signal
is usually available, whereas the external disturbance to be
rejected is more difficult to obtain, especially facing a time-
vary uncertain operating environment. In this context, this
work focuses on the more challenging task of disturbance
rejection and considers the uncertain LTI SISO systems
described by:

i(t) = A(w)a(t) + B(n)u(t) — d(t)], 2(0) = w0 € X
y(t) = Cluya(t), (1)

where X € R™, v € R and y € R represent the state, the
input and the output of plant (1), respectively. The periodic
external disturbance d(t) = 1 cos(w*t + ¢) to be rejected is
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modeled as the output of the following exosystem

w=Sw, d=Iw 2)

with w(0) = wo € R?, and

0 1
S N

The control objective is then posed as designing the control
u(t) such that all signals are bounded in closed-loop and
the output y(t) is regulated to zero. The celebrated Inter-
nal Model (IM) principle [5] suggests that the information
regarding the exosystem is essential to solve the problem.
However, considering the realistic scenarios in which the
plant model uncertainties are inevitable and the external
signals can not be directly measured, the construction of a
robust regulator that adaptively embeds the internal model
of the exosystem is nontrivial [6]. An appealing study is
therefore to establish the minimum priori knowledge on
exosystem and plant which is required to design a robust
adaptive regulator.

Solutions existed in the literature can be roughly classi-
fied depending on whether w* is known prior. The known
frequency case has been extensively investigated [7]-[9].
Recent results in [10], [11] have shown that an effective
switching-based AFC can be designed for a completely
unknown stable system as long as the frequency responses
of the plant over the periods of interest remain in a known
compact set. On the other hand, when w* is unknown,
there are numerous IM-based adaptive techniques [12]-[15]
solving this problem under the assumption that an accurate
nominal model of the plant is available. Such a critical
assumption is relaxed to a minimum phase uncertain system
in [16] given that the plant parameters are restricted in a
known bounded region. Later, minimum phase requirement
is replaced by the internally stable assumption together with
certain information on frequency response of the plant [17].
A backstepping-based method is presented in [18], but the
complexity of the algorithm dramatically increases with the
relative degree.

Despite the fact that there have been considerable discus-
sions on the robust output regulation problem, we believe
that some fundamental issues concerning the relaxation of the
assumption seem far from settled in the sense that, the latest
progress presented in [11], [17] both involve complicated
switching mechanisms, along with the projection operation
posed on the update laws. Consequently, the unsatisfactory
transient behaviour, the slow adaptation requirement stem-
ming from the stability analysis and the potential erratic
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behaviour brought by the non-stop switching are inherent
difficulties that hard to overcome.

In this paper, we tend to address this problem from a
new perspective that allows us to resort to a sliding-mode-
based Unknown Input Observer (UIO) [19] to reconstruct
the exosystem in a finite time manner. The novelties of this
work are twofold: i) The prior knowledge of the external
disturbance is completely removed without incorporating a
separate observer to estimate the frequency ii) No hybrid
update law, projection or switching mechanism is needed
in our scheme, which implies the convergence rate can be
made arbitrarily fast in theory. Moreover, from the simulation
results, the robustness and superior transient behaviours of
the presented method are both observed, which suggests
the applicability of the proposed technique in the practical

settings.
Notations: The following notations will be utilized in this
paper: || - || represents the Euclidean norm of the matrice or

vector; For any constant matrix M € R™*", denote M ™ =
max (M,0) and M~ = max (—M,0). Then obviously, we
have M = M+t — M~ and |M| = M+ + M~, where |M|
stands for a m x n matrix formed by taking the absolute
value of every element of M. For a matrix or vector M >
(>, <, <)0 means that all elements of matrix or vector are
> (>, <, <)0 respectively. In addition, a Metzler matrix is a
square matrix in which all the off-diagonal components are
nonnegative.

II. PROBLEM FORMULATION

In this section, we will present a novel formulation of the
output regulation problem where the unknown exosystem
and states are interpreted as the input signals. This allows
us to employ a high-order sliding-mode (HOSM)-based
UIO to design a certainty-equivalent feedback controller to
stabilize the overall system. Let us start with clarifying the
assumptions needed on the plant and exosystem.

Plant (1) is largely uncertain in the sense that the depen-
dence of the matrices A(u), B(p) and C'(u) on the unknown
parameter vector u € RP is unknown but p € RP is assumed
to range on a given compact set, P C RP. However, system
is assumed to be internally stable, robustly with respect to
w € P, which is formally stated as follows:

Assumption 11.1. There exist constants cj,co,c3 > 0 such
that the parameterized family P, (u) : RP — R™*™ of solu-
tions of the Lyapunov equation P, (p)A(p)+AT (1) Py (1) =
—1I, satisfies ¢11,, < Pp(p) < ealy, ||Pe(p)| < c5 for all
weP.

Apart from the internal stability, as a primary result, we
also assume the system is a minimum phase plant with
relative degree equals to one. Denote the transfer function
of plant (1) by

Z(s) _
Wy =kp ey = Clu)(sT = A() ' Bp), 3
P(s)
where Z(s) = 8™ +b,418™ 1+ -+b,_15+b, and P(s) =
s"+a;s" ' +azs" 2 +---+a, are polynomials of order m
and n respectively, from which the relative degree of plant

(1) is r = n — m, and k, stands for the unknown high-
frequency gain, which, without loss of generality, assumed
to be positive. The extra assumption on plant is given below:

Assumption 11.2. Plant (1) is minimum phase with relative-
degree-unity, that is Z(s) is Hurwitz and r = 1.

The relative degree assumption indeed limits the appli-
cability of the proposed method to certain extent, however,
it could be relaxed at the price of additional complexity of
the algorithm. However, to illustrate the main idea, we keep
above assumption in this paper.

The exosystem model (2) maps the uncertainty associated
with 1) and ¢ to the unknown initial condition wy € R?
and the unknown frequency is incorporated in the dynamic
matrix S. In this work, we only assume the norm-bounds on
frequency and the amplitude of d(t) are given':

Assumption 11.3. The amplitude ¢ and frequency w* of
satisfy the following inequalities

<9 “4)

for some known positive constants w, @ and .

w<w' <,

Now, the problem addressed in this paper can be formally
stated as follows:

Problem 11.1. Suppose Assumption II.1-II.3 hold for the
uncertain system (1) under the effect of a single sinusoidal
disturbance generated by the exosystem (2). Design a dy-
namic feedback controller in the form of

C(0) =0 €R™

Cc = tPc(me%
u= hc(Ccay)

such that the trajectories of the closed-loop system origi-
nating from all initial conditions o € X, (;o € R™ are
bounded and the output of the plant satisfies lim;_, o, y(t) =
0 for all 4 € P.

Similar to [10], [11], we first propose an adaptive feed-
forward controller(AFC) that is constructed as a copy of the
exosystem (2) as follows:

w = Sow + I'"uy, w(0) =1y € R?
u= I, (5)

where u, : Ry — R is an auxiliary control signal to be
determined later and

0 1
So =: (—w% 0)

with wg > 0 a constant chosen to verify Assumption IL.3. Let
¢(t) = w(t) — w(t) denote the difference of states between
the exosystem (2) and its counterpart (5), we obtain

¢ =SoC+ I (uy +5(t)),
u—d=1¢

with 6(t) = Quw(t), where 2 = (w*)?> — w2 represents
the frequency mismatch and w; represents the first state of

I This assumption is not conservative in the sense that one can always
choose sufficiently small (or large) constants to serve as the boundaries.
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exosystem (2). Clearly, 6(¢) is also a bounded sinusoidal
signal based on Assumption II.3. Changing the coordinate
as z = x — II(u)¢, the interconnection of the plant (1), the
exosystem (2) and AFC controller (5) can be rewritten as
follows:

= A(u)z — ()T (up +6), 2(0) =z €R"

C=80C+ T (up+6), ¢(0) = ¢ € R?
y=C(n)z+ g (u)C, ©6)
where IT(u) is a solution of the Sylvester equation
I (1) So = A(p) I (p) + B(p)I" @)

and set C'(u)I1 (1) =: 9] (u). The existence and uniqueness
of the IT(u) is guaranteed by the fact that the spectra of S
and A(p) are disjoint.

Hereafter, the uncertainty parameter vector p is ignored
for neatness when no confusion is caused.

To facilitate the forthcoming analysis, we introduce a

coordinate change as {; =: y and & =: ¢, and rewrite
System (6) into its normal form as follows
& =&,

o = —wi&1 + kp(up +0) + CA%z + W20z ®)

where we have taken advantage of the fact that 9 =cCIl,
CB =k, and the Sylvester equation (7).

Remark 11.1. Tt is worth pointing out that the dimension of -
subsystem depends on the relative-degree of system (1). For
n —m > 2, we can construct corresponding £-system with
order n — m + 1 and develop the observer-based controller
presented in the following Section accordingly.

To facilitate the controller design, we add and subtract a
term kpouy to the right hand side of the differential equation
of &, where k, is a control constant.

Then, we can rewrite the dynamic of £ =: (& §g)T as

€= Sof+ I'kyoup + I'T A,
y = C¢, ©)
where C' = (1 0), A can be regarded as the lumped

uncertainty in the form of

A= (CA? +wWiC)z — kpup + kyd (10)

and l;;p = kpo — kp represents the error of high-frequency
gain estimate given by a constant k.
Now, concerning the closed-loop system in the form of

£ =80+ I Tkyouy + I'" A,

3=Az — T (uy +9),

y = CE, (11)
the original Control Problem II.1 can be recast into an
observer-based regulator design problem as:

Problem 11.2. Under Assumptions II.1-11.2, design a control
law of uy(¢) for System (11) such that the trajectories of the
closed-loop system are bounded and the output y of the plant
asymptotically converges to zero as time goes to infinity.

III. CONTROLLER DESIGN

The aim of this section is that of showing the design of
the control law wu; which solves the Problem II.2. Thanks to
the controllability of the matrix pair (So, I'T), we propose
the following certainty-equivalent control law:

Up = —K é — LAA
kpo
in which K is a gain matrix selected so as to ensure
So — kPOFTK is Hurwitz. é and A stand for the estimates
for £ and A, which will be given by, respectively, a high-
order sliding-mode (HOSM)-based observer and a novel
input re-constructor [20] described later. According to the
so-called separation principle [20], it is well-known that such
combined observer-controller output feedback scheme is able
to preserve the main features of the controller with high-order
sliding-mode observers [21].
Recalling the definition of A in (10), it holds

(12)

- 1
uy = —K& — —(CA? +wiC)z
Epo

_(ﬁ_l)ub_ﬁg_ij

kpo kpo kpo
where we denote by A = A — A the estimate error of the
lumped uncertainty and f = é —¢& the estimate error of state.
Further, re-organizing the equation above, we can write the
input signal as

k 1 k 15
wp = — kPOKg_F(CA2+w§C)z—6— kLOKf—k—A- (13)
P P P P

Substituting (13) into the close-loop system (11) gives

B HE

y=C¢ (14)
where
kpo T kpo T 1 T
M| AT BATTE) e[S HFTK kpm;
0 F —kpol TK  -T

and the matrices T and F' are given by

T= klpzirFT(CA2 +wiC), F=8y—kpol K
respectively. In view of (14), the proposed control law wy is
said to be a stabilizing one as long as the system enjoys an
input-to-state stable property. Obviously, given M an upper
triangle matrix, the stability property of the overall system
merely depends on the structure of the matrices F’ and A+T.
The Hurwitz property of matrix F' is ensured by design,
whereas the negative semi-definite property of A + T will
be proved later in section IV. Further, the zeroing of output
y(t) would be achieved if the estimate errors 5 and A decay
to zero sufficiently fast.

Next, the estimators of the state £ and the lumped un-
certainty A will be presented in detail, along with their
convergence properties.
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A. High-order sliding-mode (HOSM) Observer

Inspired by [21], a novel HOSM observer é = (él fQ)T
is proposed as

&=b+in, (15)
é2 = —w?)y + k‘poub + g
where U =: (191 f/g)T is generated as follows
D =710 | TV C V sign(0_1), i=1,2  (16)

with iy = y — él and 7; > 0 are sufficiently large tuning
gains selected to verify the inequalities:

2(’7’2 + L)2

and
72(19 — L)

T > L <1 a7
in which L > 0 is the Lipschitz constant of the second
derivative of &1, i.e. H§2|| < L. Note that, referring to (8),
we do not have the global Lipschitz property for &5 for now.
However, the existence of L for any finite time interval is
trivial since the plant is internally stable by Assumption II.1
and the proposed control law uy, is an L., signal®.

Now, following the similar manner presented in Levant
[21], we can establish the finite time convergence property

in the next lemma.

Proposition 1I1.1. (Theorem 5 in [21]) Consider System (9),
the estimate é given by the HOSM observer (15) with (16)
is able to track the true state § in a finite time Ty € R
if the tuning gains 7; verify condition (17) for all ¢ €
[0, T¢]. Moreover, the convergence time T is irrelevant to
the Lipschitz constant L but mainly depends on that size of
[£6(0)|, i.e. the initial estimation error of &,.

Remark T1.1. [23] provides a good pair of choice of the
tuning parameters that balances the convergence speed and
accuracy is 71 = 1.5Lzand 75 = 1.1L, even though they
do not satisfy (17). In practice, we can always find proper
tuning parameters starting from sufficiently large 7 and 7o.

Further, with the merit of the internal stability in Assump-
tion IL.1 and the fact u, € Lo, we have the signal A(t)
defined in (10) belonging to L. as well.

Lemma 1II.1. There exists a class-/C function 8(¢) such that,
for any ty > 0, A(t) is norm-bounded by ||A(¢)| < B(ts)
for any t € [0,¢y).

Proof. Recall the form of A = (CA%+w2C)z —kpup+ k0.
Thanks to Assumption II.1, state z(¢) in System (11) features
the input-to-state stability with respect to the input signals
that consist of a sinusoidal signal § and a L. signal wup.
Therefore, z € Ly, Which in turn, implies A(t) can be
norm-bounded by a class K function 3(t¢). O

2A signal is said to be a Looe if its Loo-norm exists for any finite time
t [22]. The boundedness property for the truncated u; will be more obvious
after we determine the estimator for A later in Subsection III-B.

Finally, subtracting the first equation in (11) from (15),
the dynamics of the estimate error can be obtained as

& =&+,
b=1—A (18)
where (51 éQ)T = £. Similar to Lemma IIL1, it is shown in
[21] that a sliding mode appears on the manifold §&; = &3 = 0
in a finite time by choosing the gains 7; > 0 properly. In
addition, this also suggests the estimation error is a bounded

and monotonically decreasing signal (See Theorem 5 in [21]
for details).

B. Interval Observer-based Estimator

In the remaining part of this section, we will develop
an interval-observer-based estimator for A (10) that also
features a finite-time convergence property. To this end, a
non-conservative assumption needs to be made first for the
output y and its time derivative as follows:

Assumption 1IL 1. There exist two known constants £(0) and
£(0) conforming to £(0) < £(0) < £(0) for all zp € X and
e P.

The properties in lemmas listed below will play a critical
role in designing an interval observer for £-system (9) and
consequently an estimator for A :

Lemma 111.2. [24] The solution of a differential equation
z(t) = Ax(t) + d.(t) satisfies z(t) > 0 for all ¢ > 0 if
2(0) > 0, the matrix A € R"*™ is a Metzler and Hurwitz
matrix, besides d,(t) € R™, d,(t) > 0, for any ¢ > 0.

Lemma 111.3.  [24] Suppose there exist column vector vari-
ables Z(t), x(t), z(t) € R™ satisfying z(t) < x(t) < Z(¢),
for all t > 0, then for any constant matrix £ € R"™*", we
have

Eta(t) —E7x(t) < Ex(t) < ETT(L) — Ez(2).

The proof of above lemmas III.2 and III.3 can be found in
[25], [26] and therefore omitted here. Consider a coordinate
change ¢ = Q¢ with ) being an invertible matrix, then the
&-system (9) is transformed into

$=QSQ '+ QI Tkyoup + QI A,
y=C0Q 'z (19)
Thanks to the observability of the matrix pair (So C’)T, an
interval observer for System (19) is constructed as:

$=Q%Q™'T+ QI Tkyouy + Qy(y — CQ™'T)
HQITY By — (QIT) (=), )
$=Q8Q 7'+ QI kpouy + Qy(y — CQ™ ')
QI )" (=B1) = (QI'T) By,
in which 81 =: [(ty) is determined by Lemma III.1 and
the initial states are set as (0) = QTE(0) — Q&(0) and
5(0) = QTE(0) — Q&(0). System (20) is the so-called
interval observer whose property is asserted by the following
Proposition.

(20)
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Proposition 1I11.2. Under Assumption IIL.1, the states of
System (19) and (20) verify ¢(t) < (t) <3(¢) for all ¢ > 0
if the gain matrix v together with matrix @ is chosen such
that matrix Q(Sp —vC)Q ™! is not only Hurwitz but also
Metzler? .

The proof can be found in [20, Theorem 2]. Then, thanks
to ¢(t) < <(t) < f(t) in Proposition II1.2 and Lemma III.3
with the fact £(t) = Q~'c(t), the upper and lower boundary
estimates of £(¢) can be calculated by

&(t

) = (Q7H)T<(t) — (@) s(1),

£) =(QH)*s(t) — (@) <)

Now, based on the sliding mode observer (15) and the
interval observer produced by (20)-(21), we are ready to
employ an algebraic unknown input reconstruction method
proposed by Zhu [20] to estimate the lumped uncertainty
A in (10). In virtue of (21), it is not difficult to check that
£(t) < €(t) < &(t) holds for all ¢ > 0, which suggests that
£, <& < &5, then there must exist a time varying co(t)

2

satlsfylng 0 < ap(t) < 1 such that & = agéy + (1 — )€,
or
& =ai(t)(€ —&,) +&, (22)
Then differentiating (22) gives
b= —E) tasly — &)+, (23)
In view of (21), it follows that
E-e=@M +@M]e-[@n +@M]s
Q7' < (24)
with ¢ = — ¢ whose dynamic is governed by
S =Q(So—10)Q <+ QI B, (25)

where Bl =: 23,. Further, referring to (20) and (21), it holds
that

E=@Ne-@N¢
= Mys — MoS + vy + Ni(=B1) — NoBy + I kpouy
where
My = (QHTQ(S) —1O)Q ™,
My =(Q)~Q(So —1C)Q™,
N=@H*@rH*+@hH @rh-,
Ny = (@ HHQrH~+@H-(Qrh*

As a result, in terms of &, above equations suggest that
& =&, = f(9),
& =&, = (<),

§2 = /3 (67 S) + prUb (26)

3Readers are referred to [27], [28] for systematic and concrete design pro-
cedures like solving Sylvester Equation or through time-varying coordinates
to derive @, ~y.

where
H(S)=T ’Q_ll S,
L3 =T|Q7'[Q (S0 -1C) Q'S +]QrT[ ],
f3(5,6) = (Mys—MoS+T T kpoup+yy+Ni(—B1)—Nafy).

Now, substituting (26) into (23) yields

& = @ f1(3) + a2 f2(S) + f3(5, ) + Kpous.

Meanwhile, recall the first equation of (11), we have 52 =
—wdy + kpoup + A which, together with (27), gives

A=cafi(S) +azf2(S) + f3(5,5) + wiy

from which (28), a re-constructor for the unknown input A
in (11) is obtained by

A =dafi(3) + aofo(S) + f35,5) + wiy

27)

(28)

(29)

where &2 and &o are the estimation of ¢ and as, respec-
tively. Then, due to (22), &2 can be computed by

252—§2—6
52_§2+6

= §2; otherwise, € = 0.

(30)

with € = 1, if &,

In order to get the estimation of &y denoted by 542, we
again resort to a class of second-order high-gain sliding
model observer [21] as follows:

P1 =l1,l1 = —51\01 — d2|1/25ig1’1(p1 — dg) + pa2,

[)2 = fn2sign(p2 - Ll) (31)

where po is the identical estimate of ¢, used as the
exact estimate of ¢y as well mentioned in the design of
HOSM observer (15), as long as two positive scalar gains
ki > 0,4 =1,2 are determined properly based on Proposi-
tion III.1.

Proposition 1I1.3. Under Assumption III.1, the estimator for
the lumped uncertainty A in (10) that consists of (29)-(31)
and (20) is able to provide an accurate estimation within
finite time, that is, there exists a time instant 7y > 0 such
that A(t) = 0, for all t > Ty.

Proof. From (28) and (29), we can deduce that
A(t) = Go(t) 1<) + @z (t) f2(<)

where ca(t) = do(t) — do(t) and as(t) = Gz — ao.
Thanks to Lemma IIL1, the finite time convergence of £(t)
implies do(t) = 0 for all ¢ > Ty. Since (31) features the
same structure with (15), one can easﬂy conclude that, after
another period of time, say Ty, ¢z must converge to ¢
and the local boundedness of &s is certain with all 51gnals
bounded. Then, setting T =: T + T, we have A(t) =

for all ¢ > Tf. Thus complete the proof. D

Remark 111.2. The finite time convergence properties stated
in Lemma IIL.1 and Proposition IIL.3 also indicate the bound-
edness of the estimate error £ and A. Referring to the close-
loop System (14), we can conclude that the boundedness of £
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and z is guaranteed if (14) is stable in the sense of Lyapunov
(will be rigorous proved in Theorem IV.1), which in turn,
suggests the boundedness of é and A. Also, In view of (8)
and (13), the boundedness of ||€,|| now becomes trivial. As
a result, the Lipschitz condition required by (17) actually
holds globally.

IV. STABILITY ANALYSIS

The previous section presented a delicate design of a
certainty-equivalence controller (12) utilizing a HOSM-based
observer (15) and an interval state-based estimator (29) that
both enjoy the finite time convergence properties as long
as up remains bounded in that time interval. Now, a natural
question arise is that what happens after the estimation errors
reach zero? What if the control signal u; increases to infinity
later? Referring to (13) and thanks to the fact that the
estimation errors f and A are norm-bounded and will quickly
decay to zero, one can conclude that the boundedness of w;,
for all £ € Ry would highly depend on the boundedness
of ¢ and z. This can be shown via the stability analysis of
the closed-loop system (14), which is the main task of this
section.

First, a lemma that plays a key role in establishing the
stability property is given below:

Lemma IV.1. Suppose Assumption II.2 holds, then matrix
A+T := (2 defined in (14) is a semi-definite negative matrix.

Proof. Recall the definition of the matrix

1
T= k—HFT(CA2 + wi0),

P
in which I7 is a solution of the Sylvester equation (7). Now,
split II matrix into two parts as IT = [hy, ha], where hy
and ho are both a n-dimensional column vector. Then, the
Sylvester equation (7) can be rewritten into two equations as
follows:

Ahy = —wihy, Ahy+ B = h;y. (32)

Eliminating the vector h; in (32) and putting the terms
involving ho together, we obtain

(A% +wil,)hy = —AB,

which yields

hy = —(A%* + wil,) *AB (33)

due to the nonsingularity of A% + w?2I,. Now, bearing in
mind that ITI"" = hy, we can substitute (33) into {2 to get

1
N=A- F(A2+w01 ) ABC(A2+w0 )
P
= (A% +wil,)~ (A — k:ABC) (A% 4 wil,)
P

which suggests the eigenvalues of (2 are irrelevant to wg, but
purely determined by the structure of the plant, i.e. A, B,C
and k,. Hence, we now focus on the structure property
of the matrix A — ABC’ =: {2. Notice that, since the
proposed algorithm does not use any specific knowledge of

the parameter value of the plant, without loss of generality,
we can always assume the matrices A, B, C' are already in
a controllable canonical form as follows:

0 1 .- 0 0
A= : oo B=| : ,
0 o --- 1 0
I nxn kp nx1
C=[bn b 1],

where [a17...7an]T C R™ and [bg,...’bn]T C R™ ! are the

coefficients of the transfer function defined in (3). Certainly,
these are unknown coefficients that depend on the unknown
parameter vector p € P.

Given a controllable form, after some tedious calculations,
one can observe that {2 admits the form of

B 0n—1><1

0= 34
Alx(n—l) 0 nxn ( )
where {-A}l,i = albn+1_i — Qp+4+1—4> 1= 1, 2, ---n—1and
0 1 0
B = : : ‘. :
0 0 - 1
_bn _bnfl _b2

(n—1)x(n—1)

It is trivial to see the eigenvalues of B happen to be the
zeros of plant. Thanks to the minimum phase assumption, the
matrix (2 therefore has n — 1 negative poles plus one at the
origin, which indicates matrix (2 is semi-definite negative.
Thus end the proof. O

Finally, the main results of our stability analysis are
summarized by the following theorem.

Theorem IV.1. Consider the closed-loop system consisting of
the plant (14), the control law (12), the observer (15) and the
estimator (29), suppose Assumptions II.1-1I.2 hold, then all
trajectories initiating from z € X, A(0) € R and £(0) € R?
verifying Assumption III.1 are uniformly bounded and the
output y converges to zero asymptotically.

Proof. We first conduct a coordinate change to state z of
the closed-loop system (14) that zZ(t) = Hz(t) with H =
A% +wil,, being an invertible matrix and verify the condition
HOH ™' = 2 introduced in Lemma IV.1. Referring to (14),
we have the dynamic of Z is given by

:Qz+HN(2).

Thanks to the block structure of 2 shown in (34), we can
split the state z into two signals as z = (21 22) where
z; € R"71 and z, is a scalar. Accordingly, the dynamics of
Z can be rewritten as:

z1 = Bz + 71§ +Ilg—|- 01A~

Zy = Az + Tl + T + O, A 35)
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where the matrices are partitioned as

@HHFTK: |:Il(n—1)><2 ] iHHFT _ |:Ol(n—1)><1:|
ky Toaxa) | ky Oz(1x1)
and A, B are defined in (34).

Due to the Hurwitz property of matrices B and F', one
can easily conclude that the subsystem consisting of z; and
& is input-to-state stable with respect to the estimate errors
€ and A. Moreover, the unforced -¢-subsystem is actually
exponentially stable. Thus, thanks to the finite convergence
and boundedness properties claimed in Proposition III.1 and
II1.3, we have signals z;, £ and y are all L., signals and
will exponentially decay to zero after t > T. Nevertheless,
to conclude the uniform boundedness of all trajectories, one
thing left now is to show that Z, also belongs to L.

According to Theorem 5.1 in [29], we have, for each
z1(0) € R"1, £(0) € R?, the z;-&-subsystem is finite-gain
L, stable for any p € [1, oc], that is, there exist nonnegative
constants sy, s, 01 and go such that

1zollc,. < s (IEle,. + 14z, ) + o,

I€le,. < 52 (1€, + 1Ale,.) + 02 (36)

In our case, together with the finite convergence of ||€]| and
[|A]], it follows that £ € £y and Z; € L£;. Integrating both
sides of the differential equation for z» given in (35) yields

Iz < [1z2(0)]] +/O @2[|€(7) [l + @1 [z1(7)|d7

Tf B B
+ / (@& + @l A dr G
0

for some positive constants wi, ws, ws, wy. To be further,
we have
[22() )| Lo = supesoll22(8)]| < [|Z2(0)[] + w2[€]| L,
+ @iz 2, + @sléll, + @allAllz, < oo (38)

Hence Z3(t) € Lo, which means all signals are bounded.
Thus end the proof. O

V. NUMERICAL EXAMPLE

In this section, we show the effectiveness of the proposed
scheme by a numerical example*. Consider a second-order
minimum phase system described by

2s+1
G(s)= ———
() s2+2s5+3
under the effect of a sinusoidal external disturbance
d(t) = 2S%n(2t—§) 1f.t6 [0,15)
2sin(3t — %) if t>15
The reduplicated exosystem is constructed with wy = 1

and &(0) = [0,0]". The feedback gain matrix K used in

“Due to space limitation, further comparison simulation with the
IM-adaptive method [30] are not presented here, which emphasises
the fast convergence ability of the proposed method. The inter-
ested reader can refer to the supplementary materials via the link
https://www.overleaf.com/read/pbbrswqmsfyg

the control law (12) is selected such as the eigenvalues of
So — kyol T K are —5 and —5.2 with k,o = 1. The tuning
gains for the HOSM observer (15) and (31) are selected as:
71 = 40,79 = 30 and k1 = 15,k9 = 12. As there are
no precise rules for the selection of the HOSM observer
gains in (15) and (31), this was done via trial and error,
starting from the sufficiently large value, see [21] and [20]
for some discussions in this respect. The parameters of the
interval observer (20) are selected as v = [17,51] " and the

transformation matrix used in (20) Q = 8%223 _88?;32)

is chosen so that
N —4 0
Q(So —1C)Q ™" = ( 0 —13)

is a Hurwitz and Metzler matrix verifying the condition in
Proposition II1.2. The initial condition of the plant is set as:
2(0) = [-1,1] ", while the HOSM observers in (15) and (31)
are initialized with : £(0) = [~1,0] ", p1(0) = 0.5, p(0) =
0. Thus, according to Assumption III.1, the initial value of
interval observer (20) can be calculated as £ = [1,3]" and
E=[-1,1]T.

Simulation results are shown in Fig. 1-3. With the fast
convergence of control input u to unknown disturbance d
in Fig. 1, the output of the plant is regulated very quickly
to zero. The finite-time convergence properties of HOSM
observers in Proposition III.1 and III.3 are verified by the
Fig. 2. As depicted in Fig. 3, the boundedness of all signals
is ensured. The dramatic features enjoyed by the proposed
method are demonstrated via the transient behaviour around
15s, at which the frequency of external disturbance under-
goes an abrupt change. From the magnified plot in Fig.
1, y goes back to zero after a small oscillation while the
input u tracks the new disturbance instantaneously. Another
distinguished feature of the proposed scheme is that we do
not estimate the frequency of the external disturbance and
change the structure of the controller accordingly. With wg =
1, the complete rejection of the periodic signal with different
harmonic tunes is achieved. Certainly, after the output being
regulated to zero, one can obtain the frequency information
applying many existing parameter estimation techniques to
the control signal u(t).

5 =
K Z
E - u
= 5 1
I
< -10 ’ .
E. 0 5 10 Time(sle%) 20 25 30
z 0 £ g =10
N O Vs e
= 1 -0.1
2
= | 15 16 17 | |
s 2

0 5 10 Timecdedy 20 25 30

Fig. 1. Time history of the output and input signals.
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2 | —&(t)
0 ~
ey —&(t)
2F [8]
0 Ti 15 20 25 30
50 . 1me(s?c) . .
0 i —A(1) ]
T sof .
-100 ! ! ! ! ! [10]
0 5 10 Time(slesci 20 25 30
Fig. 2. The estimate errors of £ and A. [11]
S | T T T T T
. —a1(t)
z 9 L 2,(t)
£ 1 1 1 1 1 [12]
0 5 10 . s 20 25 30
Time(sec)
3 10 T T T T T —
AR A it -
< 0 —ﬁ)z(t)
% 5 L L L L 1
0 5 10 15 20 25 30
Time(sec) [14]
= 30 =0
0 ] ] ] ] . ] [15]
0 5 10 15 20 25 30
Time(sec)
[16]
Fig. 3. Time history of states of plant (1) and controller (12).
[17]
VI. CONCLUSIONS
. . 18
In this paper, a novel UlO-based AFC is proposed to 18]
solve the output regulation problem for an uncertain LTI
SISO system with few information on the nominal model and ~ [1°]
external disturbance. Compared with the switching adaptive
mechanism [11], [31], we relax the requirement for fre-  [20]
quency information w* without introducing any discontinuity
in the controller. We have shown the resulting closed-loop 5,
system enjoys asymptotically stability and the disturbance
can be completely rejected. The simulation results are con- )
sistent with the theoretical results and show that the control (23]
objective is achieved by the proposed scheme. The future
investigation should include the removal of minimum phase  [24]
requirement and extend the algorithm to the case in which
the system has higher relative degree. [25]
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